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1. GENERAL DESCRIPTION OF FEFFLAP

1.1 Introduction

FEFFLAP (Finite Element Fracture and FLow Analysis Program) is a finite
element program for two-dimensional analysis of static or quasi-static
propagation of discrete fractures in homogeneous or jointed media. The
fractures, or cracks, can be driven by a variety of loading conditions,
including internal fluid pressure. The code contains quite sophisticated
fracture mechanics: stress intensity factors are calculated with special crack
tip finite elements; fracture instability and angle of propagation are
estimated from any one of three fracture criteria; induced cracks can change
direction and can interact with pre-existing fractures. FEFFLAP also provides
for non~linear behavior of discontinuities such as geologic interfaces and
joints, and for steady-state viscous fluid flow in the cracks and the

discontinuities.

FEFFLAP has evolved from three building blocks:

. the FEFAP (Finite Element Fracture Analysis Program) for discrete
fracture propagation 1n rock and concrete |1-3].

. the JTFLO code for coupled analysis of flow in fractured media [4], as
further enhanced at LLNL.

the JPLAXD code for static analysis of structures in jointed rock [5].

The program is both incremental and iterative. Incremental means the ability
to apply loads in a stepwise fashion. This emulates to some degree the time
dependency of a loading, such as a borehole being pressurized in rock; however,
the solution at each load increment is steady state, not transient. Iterative
means that the calculations are done repeatedly within each load increment to
satisfy the non-linear constitutive relations of geological materials, and the

coupling between the flow and the structural stress changes.

FEFFLAP can calculate the exact load required tc initiate or extend any
crack. A multiple load capability is available in the code, for complicated

fracturing problems involving simultaneously loads that can change and loads



that do not change. An example of such a problem is hydraulic fracturing of a
gas field from a borehole: the field stresses at infinity are constant in time
during fracture propagation, and the fluid pressure in the borehole is variable;
note, however, that the field (in-situ) stresses can vary arbitrarily in space,
inside the domain. FEFFLAP also has the standard set of permissible boundary

conditions (loads, displacements, pressures).

The operation of the code depends heavily on graphics because it is a fully
interactive model. The user can alter crack propagation by changing conditions
during the analysis, can iterate on fluid flow and joint nonlinearities, as
required for convergence, and can change aspect ratios of elements at each
increment of crack propagation, to improve accuracy. The code can accommodate
up to 10 different materials and can propagate up to 9 cracks at a time; these

numbers can be increased with minimal modifications.

This report describes the theory underlying the code. The logic of the
program is also given in some details to enable potential users to make
modifications and additions, as well as to facilitate transfer of the current
version, developed on a CRAY, to other machines. General characteristics of
the program are further explained in the rest of this chapter. The version of

the code described in this report is labeled FEFFLAP 1.0.

1.2  Preprocessing

An input file must be generated for each problem. Currently this is domne by
constructing the file from a teletype. Automatic node generation via the
input file is possible with ordered quadrilateral elements. Care is not
required in the order of node numbering because a mesh optimizer (bandwidth
minimizer) is used. The flow network is simply overlaid on the elastic grid
so that a flow node exists at the end of each joint element. Flow nodes are
numbered according to increasing joint element number. The exact form of the

input file is given in a companion document.¥*

*R. J. Shaffer, A. R. Ingraffea, and F. E. Heuze, "FEFFLAP: A Computer Program
for Analysis of Fluid-Driven Fracture Propagation in Jointed Rock - Vol. 2:
User's Manual', Lawrence Livermore National Laboratory, UCID-20369, 1985.



1.3 Structural Analysis

1.3.1 Element Library

The element library consists of seven elements of three types: solid, joint
and flow elements. The flow element 1s the simplest; it is a line element
with two nodes. The remaining six elements are shown in Figure 1. The joint
(interface) element has six nodes and a prescribed thickness. The five solid
elements range from a truss element with three nodes to the quadrilateral with
eight nodes. The singular elements, Figure 1l e¢) and f), are described in
detail later, in the fracture mechanics section. Singular elements are used
only at crack tips and are designed to respond to the square root singularity

in the stresses, for the calculation of stress intensity factors.

1.3.2 Boundary Conditions

The structural part of FEFFLAP accepts three types of loading conditions:
. point loads
edge loads
. initial nodal displacements.
In addition, the fluid flow part of FEFFLAP uses two types of boundary

conditions: pressure and flow rate. These are prescribed at the flow nodes.

1.3.3 Multiple Load Capability

Analysis of fracturing processes involves the determination of the stress
magnitude required to cause fracture initiation at a point or fracture insta-
bility at a crack tip. When a single load set is used it is trivial to find
the necessary load to cause fracture initiation or instability; the load is
simply proportioned up or down according to material strength or fracture
toughness. Typical physical processes usually involve more than one type of
loading. An example is an underground hydraulically induced fracture. When
multiple load sets are used, the determinaticn of the appropriate stress level
is quite complicated. These complications can be clarified with the aid of

Figure 2.
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Figure 2: An Example of a Multiple Load Problem

The field stresses at infinity 0, and Oy in Figure 2 are constant; note,
however, that they can generate a non-uniform stress field inside the domain.
The pressure in the borehole, P, has to be determined so that a crack will
lnitiate, or an existing crack will propagate. Starting with an initial value
of P = Po’ a stress analysis indicates that the maximum tensile principal
stress, Sl’ is at the location and orientation shown in Figure 2. 1In
addition, crack tip B has the highest stress intensity factors and, according
to an appropriate fracture criterion, would propagate at an angle 8. Since

PO is insufficient to cause crack initiation (S1 15 less than the tensile



strength of the material) or crack propagation (the stress intensity factors
are less than the critical stress intensity factors of the material) a new

value, P must be obtained. This can be calculated directly for crack tip

1’
B and for principal stress Sl' The problem is that when P is increased to
PL’ stress redistribution can take place so that the new maximum principal
stress is at a different location and/or at a different orientation.
Similarly, crack tip B may want to propagate at a different angle and,
possibly, a different crack tip may have larger stress intensity factors than
crack tip B. Consequently, the determination of the correct value of P

involves sequential calculations of P, followed by a search for the maximum

1
principal stress or the maximum stress intensity factors. It is, therefore,
an iterative process. The procedure for calculating P for crack initiation

is as follows: the maximum principal stress S, is at an angle ¢ with

1

respect to the cartesian coordinate system. The stress S1 can be

constructed from the sum of the stresses due to each load set:
S, =¢' +g' (1)

where v and c denote variable and constant stress, respectively. The

superscript (prime) refers to rotated stresses, j.e.:

2 . . 2
o' =0 + +0 . (2)
x xcos ¢ 2Txysln¢ cosd ysln 0]

Since one wants S, to be equal to T (the tensile strength) for crack

ipitiation at angle ¢ one has
T=xko' +0¢' (3)

where K is a multiplicative factor. Hence

T - ¢’
xc

K = === . (4)
XV

The variable load vector is factored up by Kk and a complete stress analysis
1s done to determine if the point of initiation has changed or if the angle
¢ has changed. If so, a new K must be calculated and another stress
analysis performed. This is done until the angle and point of initiation do

not change.



Figure 2 represents a highly simplified example. In FEFFLAP the variable load
is entirely general and includes, for example, pressure due to fluid flow in

cracks and interfaces.

1.3.4 Stiffness Assembly

FEFFLAP is formulated in the displacement approach of the finite element
method, and the structural stiffness matrix is prepared by direct assembly of

elemental stiffnesses.

1.3.5 Equation Solver

The linear simultaneous equations in FEFFLAP are solved directly by a highly

efficient skyline solver.

1.4 Coupling of Flow and Structural Analyses

FEFFLAP 1is constructed from solid elements that are linear and joint elements
that can behave nonlinearly. It is coupled with a flow program that uses current
structural displacements to obtain flow rates and pressure in cracks and joints.
The mechanics of the solid-fluid flow interaction in FEFFLAP are as follows:

the fluid pressures produce boundary conditions that are used to elastically
determine the apertures of the joints and cracks. The apertures are then used

in the fluid flow model to determine flow rates and pressures. This process 1is
repeated until convergence occurs. The nonlinear behavior of joints is also
lterated upon until convergence within the flow iteration loop. The logic of

the flow/structure coupling is described in Figure 3.

1.5 Post Processing

Three types of output are provided to the user: monitor graphics, teletype
output, and accumulated output that is put into a file named by the user. On
the CRAY computer the monitor graphics can be accumulated into a graphics file
if desired and hardcopy can then be obtained after execution of the program. In
addition, FILEl contains the values of all the variables after the last flow and
joint iterations, or the last crack increment. Therefore, additional processing

could be done 1if desired.
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2. SOLID MECHANICS

The solids part of FEFFLAP is composed of linearly elastic finite elements as
material models and nonlinear joint finite elements to represent preexisting
cracks or interfaces between dissimilar materials.

2.1 Solids

Each solid material in FEFFLAP is characterized by the following:

. Young's modulus

. Poisson's ratio

. fracture toughness

. uniaxial compressive strength
. uniaxial tensile strength

tensile strength in tensile—compressive region.

2.2 Joints

Joint elements are characterized by sixX parameters:

. normal stiffness
. shear stiffness
. tensile strength
. cohesion

. friction angle

. maximum closure.

Normal stiffness decreases by three orders of magnitude at each iteration when
the normal tensile strength has been exceeded and the joint has opened. In
addition, frictional stress is set to zero and the shear stiffness is given a
very small value when the joint opens. Figure 4 provides the nomenclature for
joints in direct shear and Figure 5 depicts how the shear stiffness (KS)
changes when the peak shear stress is exceeded. Figure 6 shows how the normal
stiffness is adjusted when joint closure occurs. Joint behavior is discussed
more fully in [5]. Joints in FEFFLAP are non-dilatant in shear. The addition

of dilation would require another level of iteration in the code [6].
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3. FRACTURE MECHANICS

3.1 Historical Perspective

The use of the finite element method to model cracking of structures can be
completely characterized by two essential elements: the manner of inclusion
of a crack in the finite element mesh, and the criterion for crack instability

and direction of growth.

In the early efforts, notably in concrete and rock structures [7-9], cracks
were modeled discretely. That is, a crack was formed by separation of
previously common element edges. The resultant change in nodal counnectivity
was made at each stage of propagation. If the crack trajectory was assumed a
priori, double-nodes could be provided along the element edges that would
become the crack path [8]. Alternmatively, all nodes could be doubled
initially and only those close to a predicted path would be separated [10].
The early discrete crack approaches all suffered two major drawbacks:
. lack of physical fidelity in that crack trajectory was constrained to
follow predefined element boundaries.
. increasing cost and decreasing efficiency in that additional
degrees—-of-freedom had to be added with each crack increment. This
meant that the size of the analysis grew, as did the bandwidth of the

structural stiffness matrix.

The "smeared crack' approach, introduced for concrete structures [11],

overcame those drawbacks and quickly replaced the discrete approach.

In the early efforts, the criterion for instability and direction of growth,
the second essential modeling element, did not derive from any fracture
mechanics notion. Rather, a simple tensile strength approach was employed.
When the principal tensile stress computed in the elements ahead of the
discrete or smeared crack tip reached some measure of strength, those elements
were ''cracked". Direction of propagation was assumed to be normal to that of

the principal stress.
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Given this starting point, one must ask what has changed in the ensuing fifteen
years of usage of the finite element method for crack propagation analysis of
rock structures. In the authors' opinion, the answer is: not much. A smeared
crack, tensile strength fracture model is the state-of-the-practice for research
and production oriented codes. The capabilities for shear transfer across, and
the intersecting of, cracks have been added. However, the smeared crack model
has remained largely unaffected by ongoing developments in finite elements,
equation solving, user-computer interaction, and fracture mechanics. It is
essential to recognize that, in its formative years, the constant strain
triangle, simple equation solvers, key-punching of data, batch analysis mode,

and elementary constitutive models were the order of the day.

FEFFLAP uses crack modeling approaches which markedly depart from today's common
practice. It integrates many of the innovations in the aforementioned areas.
For crack propagation, these methods are characterized by:

a return to the discrete crack,

linear and nonlinear fracture mechanics
. and a new essential modeling element: the use of interactive-adaptive

computer graphics techniques as an integral part of the analysis process.

Before proceeding to the new models themselves, additional background material

related to the evolution of these essential elements needs to be detailed.

It 1s not surprising that the initial usage of the discrete crack approach was
short lived. To overcome the first of the drawbacks cited above, manual
remeshing after each crack increment would have been required. It was well
known that bandwidth minimization was essential to analysis efficiency, but,
to overcome the second drawback, manual renumbering for minimal bandwidth of
an incresingly complex mesh also would have been required. Clearly, given the
mesh generation and bandwidth minimization capability of the middle 1960's, an
adversary relationship existed between the discrete crack and the finite
element method. It was the encumbrances of the ahove mentioned drawbacks, and
not a new view of the physics of the problem, which led to the early and
nearly ublquitous adoption of the smeared crack approach. There have been
arguments proposed that the smeared crack is more realistic; however, given

the scale differences between the finite element width typically used in
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analysis and usually predicated by other considerations [12] and the physical
width of a crack and associated process zone as observed in experiments [13],

these arguments are difficult to accept.

In trying to return to the more physically palatable discrete crack idea there
have been sporadic efforts towards eliminating its drawbacks, such as the novel
approach of Ngo [14]. However, if a discrete model were to become acceptable
at any level of use, a method of automatic regeneration of the mesh to accommo-
date arbitrary and incrementally changing crack trajectories whould have to be
found. This method would properly introduce the displacement and traction
variations across and along the crack, properly mesh around the crack tip,
allow cracks to cross pre-existing discontinuities, and minimally increase the
bandwidth of the structural stiffness matrix. Let us review the various
advances over the last decade that have, in fact, led to the development of

such a method.

First, take the capability for automatic mesh generation. Few would, today,
consider complete manual generation of even a two-dimensional mesh. Automatic
mesh generators of various degrees of sophistication are now in widespread use.
At their highest level they make use of generalized lofting, splining, and
other elegant topological manipulations to produce complex two and three-
dimensional meshes from minimal user input [15-17]. But, in fact, the problem
at hand is simpler in that discrete crack modeling requires only local modifi-
cations to an existing mesh. A solution to this problem for two-dimensional
and axisymmetric meshes 1s implemented in FEFFLAP. The algorithm developed 1is
based on the local remeshing requirements which result from:
. a discrete crack crossing an element.
. ascertalning which element 1s the next to be entered, when a crack
emerges from an element side or a corner node.

. checking 1f the crack will stop in the next element entered.

The algorithm has proven to be versatile and robust. Common pathological

situations which may arise in remeshing are automatically diagnosed and

corrected. Examples include:



_14_

a crack about to cross joint and rock bolt elements: since the latter
should not be broken by the crack, modifications such as those shown in
Figure 7 are automatically performed.

when a crack breaks an element in two, and if one of the new elements
would have a large aspect ratio, then one of the sides of the original
element will be shifted to coincide with the crack; consequently, the

crack now propagates between two elements of acceptable aspect ratio.
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Figure 7. Example of Automatic Mesh Modification Performed by FEFFLAP:
a Crack Crosses a Reinforcing Bar or Rock Bolt.
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To summarize, an algorithm has been developed which automatically remeshes in
the vicinity of a crack to accommodate arbitrary trajectories. This eliminates

the first drawback to the original discrete crack approach.

Next, is the bandwidth problem. Two potential sclutions have arisen over the
last decade: the frontal technique or automatic bandwidth minimizers. The
latter approach [18] has been adopted for FEFFLAP. After each crack increment
has created new nodes, all nodes are automatically renumbered to approach
minimum bandwidth and all the data keyed to nodes numbers are relabeled. The
entire process 1ls transparent to the user and typically adds only a few
percent additional CPU time. Consequently, the second drawback originally
ascribed to the discrete crack approach has also been eliminated. It is true
that the size of the problem still increases with crack propagation as

compared to a smeared crack approach, but this is as it should be: the
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deformation field of a structure becomes more complex with cracking, and mesh
refinement is justified to maintain a reasonable level of accuracy in the

analysis.

Finally, the most exciting development in computer analysis in the last
fifteen years probably is the area of computer graphics. Interactive graphics
has improved productivity and put the engineer back in control of his
sophisticated analyses. Control of decision-making in analysis has undergone
drastic change. Not much control needed to be exercised over the analysis
process in the simple linear analyses of the mid-1960's; with the initial
database specified there were no more judgment decisions left to be made by
the analyst. However, with nonlinear analyses encouraged by the complex
constitutive models of the 1970's, processing »f the initial database often
necessitated revisions such as load step size, error tolerances, mesh
gradation, or solution algorithm itself. 1Interactive graphics are used in
FEFFLAP to display in real time:

all stages of mesh development

. "zoomed" details of meshes
. deflected shapes
. principal stress fields

crack trajectories

. energy release rate curves

. predicted crack increment directions

. stress—intensity factor interaction diagrams, and most importantly

. numerical information essential to the analysis decision making process.

The last item implies that FEFFLAP is not only interactive-—graphic, but that
it 1s also "interactive-adaptive'. This term is used to describe methods,

essential to nonlinear analysis, in which parameters, algorithms, meshes, and
problem descriptions are selected or changed by the user during the analysis

itself.

3.2 Discrete Crack Models for Geomaterials

Two types of fracture models have been implemented into the discrete cracking

approach in FEFFLAP [3,19-21]. The first model is based on classical, linear



elastic fracture mechanics. Governing parameters are the stress—intensity
factors and the fracture toughness. The latter quantity is still designated KIc’
despite sparsity of information regarding the difference, if any, between plane
strain and other fracture toughness measures in geomaterials. As usual the
assumption is made that the process zone associated with the crack is much
smaller than the crack length; again, information concerning thickness effects

on process zone size is inconclusive to date. At the scale of the crack

length, the material is thus assumed to act as a homogeneous solid.

Whereas the linear model assigns a critical stress intemsity to the crack tip,
the second, nonlinear model, assumes that stress intensity is always zero.

This model is based on the assumption that a narrow process zone exists ahead

of the traction free crack. The process zone itself is idealized as a discon-
tinuity in displacement, but not in stress; in effect it is a "fictitious crack"
[22-24]). The process zone constitutive law relates tractions, both normal and

tangential, to crack-opening-displacement (COD).

These models are related by scale. The small crack-tip process zone in the
linear model can be viewed as the nonlinear process zone at a much smaller
scale. A very short crack would be described oy the nonlinear model, a very

long crack, with sufficient COD over most of its length, by the linear approach.

Details concerning formulation of these models and their manner of

implementation into a discrete crack idealization are presented next.

3.2.1. The Linear Model

3.2.1.1 Stress intensity factor computations

In the linear model, stress intensity factors control crack stability and
trajectory. The sequence of events in the implementation of this model into a
two—dimensional mixed-mode crack propagation code 1is:

1. Compute stress intensity factors for present crack tip location and loading.
2. Substitute KI and KII into mixed-mode interaction formula. Compute new

crack direction and assess stability. If crack is unstable, continue. If

stable, go to step 4.
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3. Remesh for a selected increment of propagation. Repeat steps l through 3
until crack is stable or fracture occurs.
4., If crack 1s stable, raise load level until instability is predicted by

interaction formula. Continue with step 3.

The accurate prediction of load level, angle change, and length corresponding
to each increment of crack propagation requires accurate computation of
mixed-mode stress intensity factors. Efficiency is also desirable since many

analyses may be required in a single problem.

The displacement correlation technique has been adopted for FEFFLAP. It 1is
accurate and efficient. Displacements computed at nodes near the crack tip
are correlated with the theoretical values. For example, in pure Mode I, near

tip displacements relative to the crack tip are,

[(2 k-1) cos 8. cos

c

[}
&I
P

7 —2' ] + L.
(5)
K
. Ly /r _ .0 _ . X
v 4G\/ 5 [(2 k-1) sin >~ sin = ] + ...
where,
u = displacement parallel to crack axis
v = displacement normal to crack axis
V = Poisson's ratio
G = shear modulus
kK = (3-4v) for plane strain
Kk = (3-v)/(l+v) for plane stress
Taking © = 180°, and r = T AR in Figure 8, the KI computed by the finite
element method is expressed by,
0/ 26G
K = V7§ G VB T VA (6)

AB
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For pure Mode II and plane stress,

K
. _II /r_ . 0 . 30
u = eV [(+3) sin > * sin = ] + ..
(7
-K
_ I1 r _ S X
v e \/ o [(2-3) cos 5 tcos T+ ...
And an expression for Ky is, for O = 180°, r = rag,
= ‘/ﬂ_.ﬁ_ -
K1 r,p KD (ug = uy) (8)

For mixed-mode loading, the near-tip displacements are given by linear
combinations of Equation (5) and Equation (7). However, it can be seen that
the combined expressions for u and v uncouple at O = + 180°. Consequently,
Equations (6) and (8) can be used for a crack on a symmetry or anti-symmetry
line. In the general, asymmetrical case, the stress intensity factors must be
computed from crack-opening and crack-sliding displacements, COD and CSD,

respectively, where, for r = r =r

AB AC’

COD = v, - v

CSD = u_ - u (9)

Substituting Equations (5) and (7) into Equation (9), and solving for K; and

KI[ yields,

= G _
S \/rAB D B T V)

(10)

L/ G _
K11 ~© T T p T el

AB

Equations (10) are the most general form for computing stress intensity

factors using the displacement correlation technique. The success of this
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technique depends on an accurate modeling of the theoretical rl/2 displacement
variation near the crack tip. Many workers have applied a number of finite

element method techniques to this end. Earliest efforts employed brute force.
Constant strain triangles (CST) were used with extremely fine meshes near the
crack tip. The major drawback to using CST's in fracture problems is the very
large number of degrees of freedom required for engineering accuracy even for

a single crack.

The next step in finite element developments for the displacement correlation
technique was to take a hint from the elasticity solution for the crack tip
displacements and create an element containing an rl/2 interpolation function

In practice, this has been done by a number of workers using elements of various
shapes. The most convenient of these, the quarter-point isoparametric triangle
[25,26], is the singular element employed by the authors. Combination of this
singular element with the extraction technique outlined below makes programming
for stress intensity factor computation almost trivial compared to the efforts

of less than a decade ago.

The application of the displacement correlation technique to quarter—point
singular elements was first proposed by Shih et al. [27] for Mode I problems.
The generalization to mixed-mode is straightforward [28] and goes as follows.
First, let a crack tip be surrounded by quarter—point singular elements and

the crack face nodes be lettered as shown in Figure 9. The only meshing
constraint at this point is that the lengths of the two elements containing

the lettered nodes be the same, i.e., AC = AE. Next, expand the lettered nodal
displacements in terms of the element shape functions and with respect to the

crack tip coordinate system shown in Figure 9. This leads to expressions of

the following form:

1 —_ 4
vyt (—3vA + b4y - vC) vYr/L + (ZVA = bvg ¥ 2vC)r/L

<
1]

(11)
1) ] 1 1 ] ' ] 1
u, + (—3uA + huB - uC) Vr/L + (2uA - AUB + 2uC)r/L

=
I

Similar expressions are obtained along the ADE ray. Taking the difference

between the expression along the two rays yields a computed crack opening or

crack sliding profile.



Now the displacement expansions from the asymptotic analytical solution,
Equation (5), are evaluated at © = + 180° to compute a theoretical crack
opening or crack sliding profile. Equating like powers of r in the computed

and theoretical profiles leads directly to:

_ 2" G ] ] ) ]
Ki = Vo lelvg - vp) +vp - vl

(12)

- 2‘" G 1 3 ] ] _ ]
Kit V T e [4Cug —vp) +up ~uld

in which,
L = length of singularity element side along the ray,
v' = crack-opening nodal displacements,
u' = crack-sliding nodal displacements.

The primes indicate that the global coordinate nodal displacements have been
transformed to the crack-tip coordinate system defined in Figure 9. The above

procedure has also been generalized to the three-dimensional case [28].

In FEFFLAP, the displacements and coordinates of the crack face nodes
belonging to the quarter—-point elements are flagged and retrieved for each
crack increment solution. The accuracy of the method will be discussed with
reference to the meshes shown in Figure 10 for the ASTM standard three-point

bend specimen.

The accuracy of Equations 12 depends on a number of mesh characteristics. For
example, Figure 11 shows two- and three-dimensional finite element results
compared to the ASTM solution, known to be accurate within 1 percent, with L/a
as a parameter (L = length of side of singularity element along crack; a =
crack length). The differences in the two-dimensional results vary from -8
percent at L/a = 0.20 to -1 percent at L/a = 0.03. The three-dimensional
results bracket the ASTM value, and centerline values are within + 5 percent
difference over the entire L/a range tested. The conclusion here is that
there is an optimum L/a ratio; however, it is problem and mesh dependent.

Experience on a large number of two- and three-dimensional analyses has shown
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Figure 10. (a) Three-Dimensional Mesh for ASTM E-399 Standard Three-Point
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Figure 11. Comparison of 2- and 3-Dimensional Finite Element Solutions with
ASTM E-399 Standard Solution.



that, other conditions being met as discussed below, engineering accuracy 1is
assured with L/a ratios in the 0.05 to 0.15 range. Although the automatic
remeshing algorithm in FEFFLAP does not include the L/a ratic as a constraint
parameter, the user can interactively modify the size of crack tip elements
after remeshing, by dragging nodes and changing common diagonal orientation of

adjacent triangular elements.

A second mesh characteristic which can strongly influence accuracy is the
number of singular elements positioned around the crack tip. More
specifically, the maximum circumferential angle subtended by any of these
elements must be limited to less than about 60 degrees, with 45 degrees
seeming to be an optimal choice. The reason for this is that the theoretical
circumferential variation in displacement is trigonometric and has a number of
inflection points; the quarter—point elements are piecewise quadratic in their
approximation to this variation. Take the three-point bend problem of Figure
10 and the results shown in Figure 11, for example: Lf the number of singular
elements around the crack tip were reduced from 8 to 6 (4 to 3 using the
symmetry of the problem), the error for any given value of L/a would double,
approximately. Although the result might sti:l be acceptable for small L/a,
one would, of course, rather use the largest ./a practicable so that the mesh
is minimally disturbed by the crack tip. The remeshing algorithm in FEFFLAP
automatically varies the number of elements around the crack tip as a function

of a user specified subtended angle.

With proper care in near—tip meshing with quarter-point modified elements,
Equations (12) can easily produce engineering accuracy in stress intensity

factor calculations.

3.2.1.2 Mixed-mode interaction formulas

As outlined above, the next step after calculation of stress intemsity factors
is the assessment of crack stability and angle of incipient propagation. This
1s done using a mixed-mode fracture initiation theory. Details of and compari-
sons among a number of such theories are given in references [1-3]. Only the

final formulations for the three theories available in FEFFLAP are discussed here.
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In the first theory the parameter governing fracture initiation is the maximum
circumferential tensile stress, Ogmax® Near the crack tip [29]. Given a
crack under mixed-mode conditions, the stress state near its tip can be

expressed in polar coordinates as:

; ] , S
Or = 1 cos % [KI(l + 511'12 %) + % KII sin © - ZKII tan E] + ...
v2ir
OG = L cos % [KI cosz-% - % KII sin 8] + ... (13
V2Tr
To L cos % [KI sin © + KII(q cos 6 - 1)] + ...
r Valr

These stress components are shown in Figure 12. The Ogp,x theory states

that:
crack extension starts at the crack tip, in a radial direction.
crack extension starts in a plane normal tc the direction of
greatest tension, i.e., at @0 such that (. = 0.

. crack extension begins when G@max reaches a critical, material

constant value.

The theory is stated mathematically using Equations (13).

— © 2 00 3

v = = — — - 2K in C = K
Jg mr constant cos — [KI cos 5 5 FII sin OO] Ie (14)

S K S K
or 1 = cos 2 [+ cos? 2 -2 ihe ) (15)
2 K 2 2 K 0
Ic Ic
e0

and, T = 0 cos — [KI sin @O + KII(3 cos 60 -1)] = 0. (16)

Equations (15) and (16) are the parametric equations of a general fracture

initiation locus in the KI—KII plane, shown in Figure 13. Also, the

direction of the initial fracture increment, 60, can be found from

equation (16) which gives,

@0 = + 7 (trivial)

Kl sin @O + KII (3 cos @O -1) = 0. (17)
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Figure 13. Fracture Initiation Loci for General Two-Dimensional Loading.
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In summary, the governing equations of the Ogmax CheOTy are (15) and (17).
Algorithmically, the stress intensity factors for a given crack tip location
and loading are first substituted into Equation (17) to obtain the new angle
of propagation, OO. The stress intensity factors and the angle OO are

then substituted into Equation (15). If it is not satisfied, the stress
intensity factor pair plots either within or outside the fracture locus shown
in Figure 13. If within, then that crack cannot propagate without some
increase in stress intensity factors. If outside, then the crack 1s unstable
and can continue to propagate until it reaches a free surface or until the

stress intensity factor pair returns to within the locus.
In the second mixed-mode fracture initiation theory, the parameter governing
fracture initiation is the minimum strain energy density S(e)min’ near the

point of initiation [30-32].

The strain energy density variation at a distance r from a crack tip is [30]

2 2
su 1215 T 5N T 3K
W O 7 ( ) (18)
\ r T
where,
a = —l—>[(1 + cos O)(k - cos 0)]
11 16G
- 28 8- (k- 1)] (19)
aj, 160 cos K
a,, = T%E [(k + 1)(1 - cos ©) + (1 + cos 68)(3 cos ® - 1)].

If the quantity in parentheses in Equation (18) is called S, i.e.,

S
woos (20)

it can be seen that, at a constant value of r, S is the varying intensity of

the strain energy density around the crack tip.
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The S(@) . theory proposes that:

Crack extension occurs in the direction along which 9U/3V possesses a

minimum value, i.e., OO such that,
2
-%% = 0 31—3 > 0. (21)
20

Crack extension occurs when S(OO) reaches a critical, material value, SC
S(0) is evaluated along a contour r = L where Ty is a material constant.

By combining the last two points it can be seen that,

LU
avVic T,

(22)

That is, specifying Sc and L to be material constants is equivalent to

specifying a material critical strain energy density. A relationship between
SC and fracture toughness can be obtained in the following manner. For

= 0, Equation (21) predicts that O” = 9°. Then, for K, = K

‘11 I CIc

equating Equation (22) to Equation (18! yields,

2
(k I)KIC

5. T TEmo (23)

A fracture initiation locus in the KI_KII plane is then obtained from,

Se 1 2 2
?; = mr (ap K] + 2a,K Ko+ a,,K )
or
K. 2 K_K K
1 = ——§E—-[a C—l—) + 2a LI, a (—ll )2] (24)
(k-1) 11K 12 K 22 K_

Ic Ic Ic

where O, is obtained from the conditions Equation (21).
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Although the direction OO = 0° for fracture initiation in pure Mode I is

not elasticity constant dependent, ©, for all other cases is a function of

0
Poisson's ratio in the S{(0) . theory.
min

To summarize, Equations (21) and (24) govern the S(@)min theory. The
algorithm begins with satisfaction of Equation (21) to obtain 95- This angle
and the stress intensity factors are then substituted into Equation (24). The
crack stability implications are then the same as outlined in the section

describing the 0 omax theory.

The third theory available in FEFFLAP for mixed-mode interaction is known as
the maximum strain energy release rate theory [33]. It states that "a crack
subjected to mixed-mode loading will grow in the direction § (Fig. 12) for
which the energy release rate G(6) is maximal over those values of 6§ for
which KI(G) is positive. The crack will start to grow when this maximum
rate reaches a critical material value GC, which can be expressed in terms

of KIC" [1,33]. Given a crack tip subjected to arbitrary K, and K the

I 1T
rate of energy release associated with infinitesimal extension of the crack tip

in a direction 8 1is:

1 )2 (1—6/ﬂ)e/ﬂ

3+c0526 1+ /m

G(6) = (

|~

[(1+3cosze)K% +
(25)

8 sinecoseKIK + (9—5C0526)K%I]

IT
Note that the stress-intensity factors (SIF's) at the tip of the infinitesimal
branch crack are not the same as the SIF's at the crack tip from which it

springs. The first are related to the second by:

- 4 1-6/n.6/2n 3 .
K = 2
I(9) (3+ 7 )(1+6/ﬂ) [KIcos o + > K1131n6]
cos O

(26)

- 4 A-6/m.6/2n 1 .
KII(e) ( 3 )\1+6/ﬂ) [KIIcose -3 K sin 0]
3+cos 6
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The fracture initiation locus predicted by the Gemax theory is:

10 /m 0 /n K ,
] = 4 (—t 2 (9 300 (1 4 scosls ) (12
2 1+ /n o’ 'K
3+COS 60 o) Ie
(27
+ 8 sinf _ cosH LI, (9 - 5 C0526 )(—li‘)zl
0 o 2 o K
KIc Ic

To summarize, Equations (25) to (27) govern the Ggmax Cheory. The
algorithm begins with finding the 60 which maximizes G(B) in equation
(25) and which at the same time, gives a positive KI(G) in Equation (26).

Even though there can be several local stationary values for 80, there 1is

only one which make K, positive in Equation (26). This 6§ and the SIF's

of the original crack tip are then substituted in Equation (27). The crack
stability implications are then the same as outlined in the section describing
the Oemax theory.

Figure 13 shows that predictions from the Gemax theory are systematically
conservative when compared to those of the other two theories. However, the
experience of the authors is that crack trajectory predictions are not very
different between the three theories, as embodied in FEFFLAP. So, the ¢

fmax
approach 1s usually preferred because it 1s computationally more efficient.

Of course, in a quasi-static crack propagation analysis the governing equations
for one of the theories would be applied at the end of each growth step or load
step for each crack tip. It may not be necessary to increase loads to bring

the stress intensity factor of a previously stable crack tip onto the fracture
locus. The propagation of another crack may -cause thte same effect. Algorithmi-
cally, this implies that the interaction factor for each crack tip, the right-
hand-side of Equation (15), (24), or (?7) ne ipdated in memory after each crack
or load increment. Depending on the mode »f interaction between the program

and the user, the former or the latter will use the i1nteraction factors to
decide which one or more of the crack rips should be propagated in a given

fracture step.
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3.2.1.3 Predicting crack increment length

The third and last step in the crack propagation algorithm according to the
linear model is prediction of the load change required to drive a crack a
specified distance. Alternatively, a load change may be specified and the

corresponding crack increment sought.

The fundamental principle here is that a crack, once initiated, will continue
to propagate as long as there is sufficient energy or, equivalently, effective
stress intensity, available. Effective stress intensity, K*, here refers to a
mixed-mode case and is the combination of Mode 1 and 11l stress intensity
factors required by the particular mixed-mode theory in use. The right-hand
sides of Equations (15), (24), and (27) can, therefore, be viewed as

normalized effective stress intensity factors.

A number of possible stability cases must be considered in creating an
algorithm for predicting crack increment length. Some examples will be
considered here with reference to Figures 14 and !5. Assume first that

propagation along some predicted direction 60 is being investigated.

Case 1: Effective stress intensity increases monotonically with crack length,
curve OA in Figure 14. If the initial crack length is less than a,, no
propagation occurs. For a = a, propagation can occur and it will continue

at P = Pi; that is, a condition for local instability has been met. Of

course, an algorithm could be written which would place such a scemario 1n
displacement or crack-length control: a crack increment, Aa, could be
specified and the load decrement required to just bring the crack tip to a + Aa
could be computed. This situation is depicted by curve 0OA' in Figure 14. To

compute Pi+1 recall that LEFM specifies that at instability,

KIc = aiPi/ai = ai+1Pi+1 /ai+1 (28)

where, a = factor depending on geometry and interaction theory. Therefore,
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1 1

P. = P. ./ —— (29)
1+1 ai+1

Equation (29) is only directly useful, however, if the o coefficient is

known at step i. For arbitrary problems, this is certainly not the case. An

alternative is to propagate the fracture an amount Aa (in the direction @O)

and compute K:+1 at load level Pi' The new load level required to bring the

crack tip to its new location is then (Fig. 14):

KIc

Poyy = ()R (30)
K.
1+1

Case 2: Effective stress intensity increases, reaches a maximum value, and
then decreases with increasing crack length, curve OA in Figure 15a. For the
value of KIc shown and at load level Pl’ no crack propagation is possible.

At load level P2’ propagation is possible only at crack length a = a,, but
the corresponding, theoretical crack increment length is Aa = 0. At load
level P3, propagation can occur for a crack of length ar, and it would be
unstable in load control. Again, as in Case 1, the crack of initial length
a; could be propagated stably to length a, by decreasing the load

Lncrementally from level P3 to level PZ' as shown in Figure 15b.

For crack lengths longer than ay crack propagation is stable in the load
control sense. An effective stress intensity monotonically decreasing with
increasing crack length implies that a monotonically increasing load 1is
required for continued propagation. In Figure 15, it can be seen that if the
load 1s agailn increased to Pa, propagation to crack length ag is possible. If
one is starting with crack length ap, and load level Pq (Figure 15), the
prediction technique is the same as described under Case 1: propagate the crack
an amount Aa in the direction @0 at load P3, compute the effective stress
intensity for the new crack length, and apply equation (30). Suppose, however,
that one 1s at load level P2 and crack length dq- The same algorithm can

still be used: the only difference is that the quantity in parentheses 1in

equation (30) will now always be less than one.



The reverse of Case 2 is also possible: effective stress intemnsity can at first
decrease and theu begin to increase with increasing crack length [34]. This

situation is handled by the techniques described in Cases 1 and 2.

A number of alternative numerical techmniques for crack increment length pre-
diction are available [1,3,29,35]; some are more approximate than others. The
simple technique described here is theoreticaliy exact for pure Mode I, colinear
propagation. However, any numerical technique which employs finite, straight
crack increments to model curvilinear propagation will be approximate. The
error depends on the specified length o the fracture increment. The analogy
here is with dynamic analysis where the time step controls accuracy and
stability of the solution. Experience with FEFFLAP indicates that predicted
trajectories may oscillate about an average pzth, due to the influence of

KI[’ 1f too large fracture increments are allcwed.

J.2.2 The Noumlinear Model

3.2.2.1 The process zone

Whether linear elastic fracture mechanics 1s appropriate for cracking in
geomaterials depends upon the nature of the process zone. Theoretically, a
KIC approach is valid 1f the size of the process zone is small compared to the
size of the area in which the singular term in the theoretical stress distri-
bution 1s the dominant contribution to the stress field. This situation is
investigated using the infinite plate problen »f Figure 16 which shows the
theoretical singular term contribution to the stress component normal to the
crack plane at incipient instability, for three materials (steel, granite, and
concrete). The process zones clearly affect! the stress redistribution. For

the metal example shown in Figure l6a, a Kk approach to fracture initiation

Ic
would be valid. A KIr approach also has been shown to be applicable to many
rocks. Figure 16b shows that while the process zone is much larger for this

granite, the singular term still domirates.
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A number of recent investigations (19,20,22,24,36] have shown that these
situations are quite different from that which occurs in concrete and some
rocks. Figure l6c qualitatively represents process zone length in concrete,

as determined by testing [19,22]). 1In tests on unreinforced concrete beams,
stresses were still being carried over what appeared to be a visible crack.
This confirmed previous experimental observations [37]: what appeared as a
crack on a particular viewing surface of a specimen was in fact a "fictitious"
crack in the fracture mechanics sense [24]; even though a discrete, visible
crack was seen to exist on the specimen surface, this crack was not fully
formed through the specimen thickness. High volumetric stresses in the process
zone of concrete cause microcracking, which, when in sufficient quantity, is
visible as an apparent crack on the surface. If the crack tip is viewed as the
point behind which no stress is transmitted, the process zone in Figure l6c is
seen to extend a relatively large distance in front of the crack tip. At the
scale of the example problem, it is obvious that the singular stress term has

little to do with the stress at the tip of the crack.

The stress state in the process zone in rocks and concrete is presumed to
depend on the post-peak stress—-strain response in tension. Such relationships
have been measured [17,36,37] and have been incorporated into the process zone

model in Figure 17 and implemented into FEFFLAP [21,23].

3.2.2.2 Stress versus COD models

It has been observed in direct tension tests [22,36] that microcracks, though
they have not yet coalesced into a continuous, through-thickness crack, can
give rise to an effective crack opening displacement. Apparently, a single,
continuous crack occurs when the total effective crack opening displacement
reaches a characteristic value. For typical concretes this value appears to

be about 0.001 inch (0.025 mm) [22,23]

. Even after this amount of opening,
however, stress continues to be transmitted across the crack; stress versus
COD relationships have been measured in tension [22,36]. Such relationships

form the basis of the discrete nonlinear cracking model available in FEFFLAP.
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Examples are shown in Figure 18. The implementation into FEFFLAP is as follows:
during the automatic remeshing associated with each crack increment, the program
inserts interface elements into the crack; these elements prohibit overlapping

of the crack sides while allowing their relative opening and sliding. The

element stiffness relationship is of the form:

ON EN 0 coD

1}

(31)
os 0 Eg CSD

where Oy =~ stress normal to crack

Og = shear stress along crack

EN = element normal stiffness

Es = element shear stiffness

The elements are isoparametric and of quadratic order and can be made to possess
variable normal and shear stiffness along their length. The secant normal
stiffness, EN’ at any point along the crack is assigned by a relationship such
as shown in Figure 19. The COD computed in a previous analysis step determines

the secant EN and, consequently, the process zone normal stress, Oy

1.0 7 T T .

o p[%ggf%m +58.2 -I37601COD] X0 >

Tensile Stress, ksi

COD(x103), in

Figure 18. Typical Relationships for Normal Stress Versus
Crack-Opening-Displacement for Use in the Process Zone.
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The shear stress transferred across the crack can be modeled in a similar
manner, using, for example, the relationship of Ref. [38] where the shear

stress varies nonlinearly with COD and linearly with CSD (Figure 20).

B

€ (COD)

CcsD

/
cob
T=E¢g x CcsD

Figure 20. Qualitative Interface Element Shear Stiffness Relationship
with Crack Sliding (CSD) and Crack Opening (COD) Displacements.



3.2.2.3 A nonlinear crack propagation algorithm

Nonlinear, mixed-mode crack propagation includes both shear and normal stress
transfer in the process zone. Modeling in FEFFLAP is accomplished through the
use of interface elements which reproduce one of the characteristic stress-
versus—COD models. However, the singular elements from linear analysis are
also used. They are still automatically placed at the tip of the process zone
(at the tip of the fictitious crack). There are two reasons for their con-
tinued use. One wants to be able, in a single analysis, to make the transition
from the nonlinear model to a linear analysis in which the process zone length
becomes a negligible fraction of the total crack length. This transition 1is
facilitated if use of the singular elements is maintained in the automatic
remeshing algorithms. The second reason is that the stress intensity factors
are still computed at a fictitious crack tip ¢ confirm that they are zero. A
nonzero stress intensity factor would indicate that the crack should actually
have propagated beyond the existing fictitious crack tip. The nonlinear crack
propagation algorithm also requires that the stress-versus—COD constitutive
models be satisfied. These requirements are met in an iterative manner in the

present nonlinear analysis option of FEFFLAP.

Given the typical local mesh configuration shown in Figure 2la as a starting

point the following steps are performed iteratively in a crack increment:

1. Iterations are performed at the current load level until the interface
model is satisfied to a specified tolerance along the entire process
zone length.

2. If KI and KII calculated at the assumed fictitious crack tip are
nominally zero, then the fictitious crack has not yet opened along its
entire length to its assumed tip. The load may be increased by the
user, and iterations again performed, until convergence is achieved
(Figure 21b).

3. Step 2 is repeated until, at a given load level, K. and/or K

I I1
become nonzero after convergence (Figure 2lc).
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T KI' Kn still Zero

Fictitious Crack Open
to this Point

(b)

Figure 21. Schematic of Steps Involved in Mixed-Mode, Nonlinear Crack
Propagation Modeling in FEFFLAP.
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(Applied Lood=1.2 xP)

Ki>0

(Fictitious Crock
Open to Tip)

(c)

(Applied Lood=1.3 xP)
New Fictitious Crack Tip

New Fictitious Crack
Increment

—~— Fictitious Crack Open
to this Point

(d)

Figure 21. Schematic of Steps Involved in Mixed-Mode, Nonlinear Crack
Propagation Modeling in FEFFLAP (continued).
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4. Using one of the mixed-mode interaction equations (16), (21), or (25)
FEFFLAP automatically calculates the direction of propagation of the
next crack increment based upon the nonzero (but small) value of K;
and K . FEFFLAP then automatically remeshes (Figure 21d) to allow
the fictitious crack to propagate further. The length of each

fictitious crack propagation increment is prespecified by the user.
5. The process is repeated for the next crack increment (steps 1 through 4).

The nonlinear option is highly interactive. After each iteration the following
quantities are displayed on the terminal screen: KI and KII for each crack,
the load factor k (Equ. 4), and values of preselected nodal displacements and
reactions. In this way, the user can observe convergence trends. At any point

he can decide to change the load with the present configuration, to reanalyze

at the current load, or to continue to the next crack increment.



- 43 -

4. FLUID MECHANICS

4.1 Fluid Flow Model

The model used in FEFFLAP is a one-dimensional steady-state, incompressible,
viscous fluid flow based on an LLNL-enhanced version of a U.C. Berkeley code
for flow in jointed rocks [4]. Low Reynold's numbers are assumed so that the
flow is laminar. The model provides for steady-state solution of flow in
parallel or tapered channels such as joints, cracks, and interfaces in rock.

Both flow rate and pressure boundary conditions can be specified. The fluid

conductivity of individual flow elements is described by:

kp = pgb2/12 U (32)

where b is the mean element aperture, p is the specific gravity of fluids, g
the acceleration due to gravity and u the dynamic viscosity. Then, the areal
permeability along a family of parallel such fractures is proportional to b3.
The merits and limitations of this so-called "cubic law" model have been

discussed at length by others [40,41].

The governing differential equation for flow is

d dh -
EE-(kP-EE) + q 0 (33)

where h is head, q is flow rate and £ is the spatial coordinate. A finite
element formulation is employed via the calculus of variations to produce
2-node flow elements which have a linear relationship between flow rate and
head (or pressure). Flow rate is determined from equation (33) and the
pressure in the fluid is obtained from the finite element solution. Hence the
pressure that is applied on the channel walls is known and is then used as a

boundary condition in the structural model.

Several improvements were made in the original flow model [4] to bring it to
1ts current state. First, extensive programming was done to generate the flow
nodes and elements automatically at each stage of crack propagation. This was
necessary because new joint elements are created as cracks extend; therefore,
new flow nodes and elements must be accounted for. In addition, cracks can

intersect existing joint networks so that a ~ommon flow node must be specified
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at the intersection. Since flow nodes are assigned according to increasing
structural joint number and the initial flow boundary conditions are tagged to
flow node numbers, an automatic shifting of boundary conditions must occur.

For example, if a crack intersects the middle of the joint element numbered '4',
with flow node numbers 4 and 5, a new joint element is created (the original
element is bisected) and the structural element number assigned to it is one
more than the highest existing element number. According to the automatic
numbering system, the old node numbered 5 is now 6 and the boundary conditions
assigned to node 5 must now be assigned to node 6. This is true for all flow

nodes greater than 5. These operations are performed automatically in the code.

4.2 Minimum Aperture for Fluid Flow

One of the important parameters in fracture flow analysis is the minimum crack
aperture for fluid flow; that is, there is an aperture below which no fluid
penetration will occur. The extent of fluid penetration strongly affects frac-
ture instability as well as angle of propagation for the static case. The
minimum aperture depends on the surface tension of the fluid and on the fluid
pressure. In FEFFLAP the minimum aperture is estimated from surface tension
theory [42]. Essentially, the radius of curvature of the fluid front R (Figure 22)
is proportional to the surface tension of the fluid and inversely proportional to
the pressure in the fluid. For example, in recent fracturing tests performed on
hydrostone blocks [43], the surface tension for the fracturing oil was estimated
from Reference [44]. At an o0il pressure of 2000 psi the minimum opening for oil
penetration is about 1072 inches. This model gives a maximum possible wetted

length that can be pressurized during each stage »f the hydrofracture process.

Fluid front
- e~ /

Figure 22. The Fluid Front Stops in a Narrowing Channel Due to
Surface Tension.

Crack faces

/
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5. PROGRAM STRUCTURE

5.1 Code Routines

FEFFLAP consists of a main routine and 105 subroutines. These are listed
alphabetically in Table 1 which briefly describes the purpose of each routine.
The overall structuring of the routines into the code is explained in Fig. 23.
For the sake of clarity most routines are identified by groups, according to

function. The main groupings in FEFFLAP are as follows:
5.1.1 Control
MAIN . Begins program execution and opens all input/output.

. Places input data in main storage vector and auxiliary arrays.

Controls operation of program under non-crack propagation mode.

CRAPRO . Controls program in crack propagation operation mode.

. Controls all crack initiation and crack increment operations.
GRCURF . Controls all operations within a crack increment.
MODTOP . Controls the mesh modification operations required for crack

propagation.

OPEN1 . Control the mesh modification operations required by the
OPEN2 opening of a new crack from a node or an edge, respectively.
NPOINT . Controls the value of pointers used to locate data in the main

storage vector.

5.1.2 Input/Output Operations

All initial data are input through MAIN, INPUT, and LOAD.

Interactive alphanumeric I1/0 via PLOT-10 routines (5.1.4) is initiated by
MAIN, CRAPRO, GRCURF, MODTOP and OPENl. Many routines produce output for the
output file and/or the terminal. Those routines that produce only output

operations are listed in Table 2.

Operation of FEFFLAP requires that a number of I/0 files be available. These

files, their function, and their device relationship are listed in Table 3.



~ 46 -

TABLE 1. Subroutines Used in FEFFLAP Version 1.0.

ADD: Adjusts number of equations for new nodes
ADILOC: Adjusts cursor location

ARROW: Plots arrows in stress plot

APERTUR: Calculates initial apertures for fluid flow
BANMIN: Control routine for mesh optimization

BANWID: Computes bandwidth
BLKSTF: Blocks the stiffness matrix

BMAT : Fills b matrix (FEM routine)

BREAK: Breaks element into 2 elements

CHKANG : Checks 1f crack tip element angle is too large
CHKBND : Checks if material number corresponds to a joint element
CRAPRO: Control routine for crack initiation and propagation
CREAT2: Dummy routine

DANIS: Computes d matrix for anisotropic elements

DATER; Dummy routine

DGREE: Computes degree of node for bandwidth minimization
DISTAN: Finds distance between a point and a line

DJOINT: Computes the d matrix of joint elements

DLIN: Computes material stiffness coefficients

DOBCRO: Checks if and where a crack entering an element will exit
DXBMAT : Computes dxb

ELAXS: Determines adjacent element

ELXNOD: Finds all elements around a node

ELXSID: Determines adjacent element

ERROR: Notifies user of insufficient memory

EXITIT: Closes files and ends program

FAILUR: Checks for condition of crack initiation

FLINDS: Fills initial displacement array

FLOW: Solves flow equations

FLOWBY: Control routine for fluid flow

FNDIAM: Computes width for bandwidth minimization

FRAINT: Finds fracture instability and angle of propagation
GAUSS: Initializes values for numerical integration

GRCURF : Control routine for crack extension

GVALUE: Determines energy release rate

IDXYRE: Finds nearest node

INDINV: Remembers nodes in bandwidth minimization

INPUT: Reads most of the initial input data

INTCUR: Draws stress intensity factor interaction curves
JACOB Calculates determinant and inverse of Jacobian matrix
JOINTE: Computes stiffness matrices of joint elements
JOISTR: Computes stresses 1n joint elements

LINPLO: Draws a vector

LOAD: Assembles the initial load array

LOCNOL: Determines node closest to a point

LOCNO2: Determines local node closest to a point

LODCRK ; Finds nodal loads equivalent to fluid pressure
MESHOP: Control routine for mesh optimization

MODTOP : Control routine for mesh modification

MONPRT Prints preselected nodal displacements

MONWRT : Writes preselected nodal displacements to teletype

NODEXY : Computes coordinates of midside nodes
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NPOINT: Sets pointers for the A array

NUMBE: Numbers the graph for minimum bandwidth

NUMPLO: Plots numbers on monitor

NWODXY: Computes coordinates of midside nodes

OPEC: Initiates crack from a corner

OPEN2: Initiates crack from an element side

PDELTA: Plots load-displacement curve

PERCRK: Relocates quarter-point nodes in singular elements
PIKLVL: Chooses level structure in bandwidth minimization
PLOTT: Controls plotting routine

PLTALL: Plots whole mesh

QARTER: Shifts midside node to quarter—~point in singular elements
REAC: Calculates the reactions

REDUCE: Bandwidth minimizer

REFINE: Refines the mesh

SETUP: Computes reverse leveling for bandwidth minimizatiom
SHAPES: Calculates shape functions

SHIFTL: Shifts pointer by one for a new degree of freedom
SHIFT2: Shifts pointer by two for new node

SHWTIP: Outlines the tips of all cracks

SIF: Computes stress intensity factors for total load

STIFN: Computes stress intensity factors due to variable load
SKDECP: Cholesky decomposition

SKSOLX: Substitution for equation solving

SKY: Control routine for solver

SKYHLP: Assembles stiffness matrix

SLICE: Separates nodes along a crack

SOLJNT: Controls nonlinear joints if no crack propagation
SORTDG : Sorts by degree of node for bandwidth minimization
STHETA: Computes sigma-theta-min interaction curve

STIFF: Computes stiffness matrices

STRESS: Computes stresses

STRINI: Calculates variable load necessary for crack initiation
TABLE: Dumps variable values 1if premature termination

TIMEA: Dummy routine

TIMLOG: Calculates time required for operations

TRANSD : Transforms d matrix to global coordinate system

TREE: Organizes nodes for bandwidth minimization

TRUSK : Computes stiffness matrix of truss element

TRUSS : Computes axial stress in truss element

WRTDIS: Writes displacements to output file

XADJ: Improve aspect ratios of elements around crack tip
XBNDSD: Modifies mesh as crack crosses joint element

XNEN: Crack enters element at a node and stops near a side
ANES : Crack enters element at a node and stops far from a side
XNN: Crack enters at a node and exits from a node

XNS: Crack enters at a node and exits from a side

XSE: Crack enters from a side and stops inside an element
XSN: Crack enters from a side and exits from a node

XSS: Crack enters from a side and exits from a side

XSTLND: Modifies mesh as crack crosses bond element from a node
XSTLSD: Modifies mesh as crack crosses bond element from a side

ZERADN: Zeroes coordinates of nodes adjacent to crack exit node
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MAIN* <> INPUT
+> CRAPRO* +> LOAD +> APERTUR
<> BANDWIDTH MINIMIZATION ROUTINES (Table 5)
«+ FEM ROUTINES (Table 4)
<> STRESS INTENSITY FACTOR ROUTINES (Table 6)
<+ QPEC* <> OPEN2* <> MODTOP «> MESH MODIFICATION (Table 7)
<> MODTOP <> MESH MODIFICATION (Table 7)
<> BANDWIDTH MINIMIZATION ROUTINES (Table 5)
<> FEM ROUTINES (Table 4)
+> GRCURF*
<> MODTOP <+ MESH MODIFICATION (Table 7)
<> BANDWIDTH MINIMIZATION ROUTINES (Table 5)
<> FEM ROUTINES (Table 4)
<> STRESS INTENSITY FACTOR ROUTINES (Table 6)
+> FLOWBY <> FLOW
<> LODCRK
+> FEM ROUTINES (Table &)

* Graphics routines being exercised (Table §)

Figure 23. Program Structure of FEFFLAP as it is Exercised for a
Fracture Propagation Analysis.
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Table 2. Subroutines for Output Operations

DATER MONWRT TIMLOG
ERROR TABLE WRTDIS
MONPRT TIMEA

Table 3. 1/0 Logical Unit Numbers Used by FEFFLAP

File No. Function Device
1 Restart information Disk

2 Currently inactive = —===—-

3 Interactive alphanumeric input Terminal
4 Load vector Disk

5 Input data Disk

6 Output listing Disk

7 Currently inactive = ==———-
8 Element stiffness matrix Disk
9,10,11 Work space for solver Disk

20 Problem dump Disk

Table 4. Subroutines for Standard Finite Element Analysis

BLKSTF JACOB SKSOLX
BMAT JOINTE SKY
CHKBND JOISTR SKYHLP
DANIS LOAD SOLJNT
DJOINT LOADCRK STIFF
DLIN NODEXY STRESS
DXBMAT REAC TRANSD
FLINDS SHAPES TRUSK
GAUSS SKDECP TRUSS

Table 5. Subroutines Used for Bandwidth Minimization

BANMIN INDINV REDUCE
BANWID MESHOP SETUP
DEGREE NUMBE SORTDG
FNDIAM PIKLVL TREE

Table 6. Subroutines for Stress~Intensity Factor Operations

FRAINI PERCRK SIF
GVALUE QUARTER STHETA
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5.1.3 Structural and Flow Analyses

Subroutines for the standard finite element analyses (stiffness assembly,
displacement and stress calculations) are shown in Table 4. Routines involved
in bandwidth minimization are shown in Table 5 and those for stress-intensity

factor operations in Table 6.

The principal mesh modification control routines (MODTOP, OPEN1, OPEN2) call a
large number of additional routines which perform various functions. A list
of these routines is shown in Table 7. The core of these are the "X-Routines"

which create the new mesh required by the situatinns shown in Figure 24.

5.1.4 Graphics Operations

The control of graphic operations is performed by the routines shown in Table 8.
These routines do not perform the display themselves. Rather, they call the

appropriate routines from the PLOT-10 libraries described below.

FEFFLAP operates in a conversational, interactive-adaptive graphic environment.
This means that there is a continuous interchange of alphanumeric information
between the program and its user and that there is graphic display of inter-
mediate results and meshes. This interchange occurs through a combination of
storage-tube (hereafter referred to as "monitor" ) and teletypewriter inter-
action. Teletypewriter exchange of alphanumeric information is handled through
the usual Fortran READ and WRITE statements with the teletypewriter addressed
as FILE 3. All monitor displays are performed through calls to libraries of
graphics subroutines. These libraries, both part of the Tektronix, Inc.
PLOT-10 graphics software system, are:

PLOT-10 Terminal Control System (TCS), Release 3.0

PLOT-10 Advanced Graphics Language II (AGL), Release 1.2

The PLOT-10 routines which are currently used by FEFFLAP are listed in Table 9.
These libraries are directly compatible with most Tektronix, Inc. graphic
display monitors. In particular, FEFFLAP is directly compatible with the

Tektronix 4010 series of display devices.
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Subroutines for Mesh Modifications

XNES
XNN
XNS
XSE
XSN
XSS
XSTLND
XSTLSD
ZERADN

Subroutines Controlling Graphics Operations.

Table 7.
ADD LOCNOL
BREAK LOCNO2
CHKANG REFINE
DISTAN SHIFT1
DOBCRO SHIFT2
ELAXS SLICE
ELXNOD XADY
ELXSID XBNDSD
IDXYRE XNEN
Table 8.
ADILOC LINPLO
ARROW NUMPLO
INTCUR PDELTA
Table 9.
ANMODE FFORM
ANSTR FINITT
BINITT HLABEL
BSYMS INITT
CHECK MOVABS
CHRSIZ MOVEA
CPLOT MOVREL
DASHA NPTS
DRAWA SCURSR
DRWABS SEETRN
DSPLAY SIZES
DWINDO SLIMX

PLOTT
PLTALL
SHWTIP

PLOT-10 Routines Used by FEFFLAP

SLIMY
SYMBL
TERM
TINPUT
TWINDO
VCURSR
VLABEL
XETYP
XMFRM
YETYP
YMFRM



SITUATION ROUTINE

,/A aﬂ\ v Sé XSS
l ‘ & V XSN
B XSE
E ﬂ 43 XNS

] l —\—./ v & XNN
Q E XNES
W —.v XNEN

The Various Situations Encountered When a Crack Crosses, Stops in,
or Moves Along an Edge of an Element are Addressed by the "X-Routines'.



5.2 Memory Management

Data which are input or generated during the first analysis step are stored in

a straightforward manner. Most data reside in a single vector, A, whose dimen-
sion, MTOT, is specified in MAIN. The vector A is an unlabeled common block.
Control routine NPOINT is called at various stages of the initial analysis to
compute pointers to the starting locations of the various arrays stored in A.
Figure 25 shows the A-vector structure at the input stages. Additional data are
arranged in labeled common blocks. A list of these blocks and the nature of
their content are shown in Table 10. A relatively small amount of data are held

as individual dimensioned and undimensioned variables in each routine.

FEFFLAP creates new nodes and elements as it propagates cracks. This means that
arrays whose dimensions are related to the current number of nodes, NPOIN, the
current number of unrestrained degrees-of-freedom, NEQ, or the current number

of elements, NELEM, change size during the course of analysis. Consequently,

some of the pointers for the A-vector must be updated at appropriate times.

Pointers N1 through N6 (Fig. 25) remain fixed during an analysis. To accommo-

date growth of the arrays stored before N6, extra space is allotted to them

during the data input phase. This is accomplished by setting a limit on the

maximum number of nodes and elements allowed in terms of their initial numbers, i.e.,
MELEM = maximum number of elements permitted = 10 * initial number of elements

MPOIN = maximum number of nodes permitted = 10 * initial number of nodes

Note that these limits, set in MAIN, are relative, not absolute. The only
limitation on the initial number of elements or nodes is the total memory
available for the A-vector, MTOT. The limits on MELEM, MPOIN, and MTOT can be
easily changed by modifying four statements in MAIN., In the current program
version (FEFFLAP 1.0) the maximum number of interface elements is 100, and the
number of non-interface elements is 300. These limits can be easily changed

by modification of a few lines of the code.

Pointers from N7 onwards change value after each crack propagation step.
Subroutine NPOINT performs the updating when it is called at each stage of
each reanalysis. Figure 26 shows the A-vector structure at each stage of an

analysis.
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Memory Allocation in Principal Storage Vector A

MATNO (MELEM)

1D (2, MPOIN) |COORD (MPOIN, 2) [LNODS (MELEM,9)
_2xMPOIN__ |, 2 MPOIN__| 9w(MELEM:1) MELER S l’
N N2 N3 Na NS
J PROPS(NMATS, 1) [ BETA (MELEM) | RLOAD(NEQ,NUMLDSET)
L _ NMATS w1t | MELEMs1__ [ NEQ  NUMLDSET
NS NSA ne NEQ N7 N7A
MTOT

Note: Only these pointers indicated have been defined.

Figure 25a. On Return to MAIN from Routine INPUT.

10 (2, MPOIN) [COORD(MPOIN, 2) [LNODS (MELEM,9) | MATNO (MELEM) | |
2«MPOIN___| 2= MPOIN 9 n (MELEM +1) MELEM +1
N1 N2 N3 N4 NS

PROPS(NMATS, 1)

BETA (MELEM)

NMATS o Y MELEM +1
- | ) e ale a

NS NSA N6

MTOT

On Return to MAIN or to CRAPRO from Routine LOAD.
Number of Load Sets.

Figure 25b.
NEQ = Nuwber of Unrestrained DOF's, NUMLDSET
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TABLE 10

Labeled Common Blocks in FEFFLAP

Label Contents
CONTRO Principal program control parameters

BLKP Pointers to the block of the stiffness matrix
FRACT Crack propagation parameters

DSPLIN Initial displacement information

INCLBL Inclined boundary condition information
CHKLO Temporary storage for loads and reactions
GRA Parameters for bandwidth reduction

cc Work area for bandwidth reduction

LVLW Parameters for bandwidth reduction

JOINT Initial joint element material properties
INTRST Current joint element material properties
MATNON Nonlinear material properties

NUMSTA Parameters for element addition/deletion
PLOTD Parameters for Tektronics I/0

RESULT Information for load-displacement plot
SURF Codes for crack propagation and an array

of the material type each crack tip is in

SOLT Parameters used by the solver

WORKTI Matrices for element stiffness formation
XSYS Global stiffness storage parameters

YNGEL Gauss point values of Young's modulus and

Poisson's ratio

XPRPDL Experimental load deflection data
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Memory Allocation in Principal Storage Vector A

1D (2, MPOIN) |COORD(MPOIN, 2) [LNODS (MELEM,9)| MATNO (MELEM) ]
2aMPOIN__ | 2aMPOIN__| 9a(MELEM+Y) _ MELEM +1
N1 N2 N3 N4 NS

) PROPS(NMATS 1) | BETA (MELEM) RLOAD(NEQ,NUMLDSET) { INPE(NELEM) '(!:'E,m)

NMATS w11 MELEM+1 NEQeNUMLDSET NELEM+] NPOTN+2
e — - T —- —_ —

NS N5A ne NEQ N7 N7a N8 N9
1NEQ » NUMLDSET |

10LD NDEG LvL LvLS? LVLS?2 NCSTOR LGAR NDSTK
(NPOIN) (NPDIN) (NPOIN) (NPDIN) (NPOIN) {NPOIN) (NPOIN) (NPOIN,140)

=23 D

NPOINS1_L NPOINAY | NPOTN41 | NPOIN+1_|_NPOINS1 | NPOIN+1 | NPOIN41 L WPOIN«140

I
:

NS N1O NN N12 N13 Ni4 N15 N16 N17

- Q—~«Z

Figure 26a. On Return to MAIN or to CRAPRO from Routine MESHOP.

ID (2, MPOIN} [COORD(MPOIN, 2) |[LNODS (MELEM,9)| MATNO (MELEM) )

2aMPOIN | 2= MPOIN 9 = (MELEM41) MELEM 1
N1 N2 N3 Na NS
J PROPS(NMATS 1} | BETA (MELEM) RILOAD (NEQ, NUMLDSET)
- BLANK =
NMATS 11 | MELEM=} _NEQ*NUMLDSET
T T
NS NSA NG N7 NO
. OR REMNANTS OF MESHOP ARRAYS BLANK

| NEQ*NUMLDSET | NEQs4sNBLK

—_— ——— —_— ——— e —and

N1P NB MTOT

Figure 26b. On Return to MAIN or to CRAPRO from Routine NPOINT(4),
Just Prior to Global Stiffness Formation.
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Memory Allocation in Principal Storage Vector A

10 (2, MPOIN) |COORD(MPOIN, 2) {LNODS (MELEM,9) | MATNO (MELEM) )
2aMPOIN | 2« MPON_ | 9w IMELEM1) MELEM +1
N1 N2 N3 N4 NS
PROPS(NMATS, 1) | BETA (MELEM) RLOAD(NEQ ,NUMLDSET)
- BLANK =~
NMATS w11 |~ MELEM1 _ NEQ + NUMLDSET
| J
NS N5A N6 N7 NS
J rLOAD (NEQ,
_ Or REMNANTS OF MESHOP ARRAYS NUMLDSET) BLK
k: o o NEQ ¢ NUMLDSET NEQ+4 +NBLI
N12 Z{ N8 MTOT
NOTE:  RLOAD(NFQ.NIMIDSET) has also been MOTE: This transfer is made in CRAPRD

transferred to T11fA in CRAPRQ

Figure 26c. On First Call to Routine
been written into FILE4 by CRAPRO.

is also made by CRAPRO.

SKY from CRAPRO,

Notes:

ID (2, MPOIN) |COORD(MPOIN, 2) [LNODS (MELEM,9) | MATNO (MELEM)

. 2sMPOIN__ | 2#MPOIN | 9w (MELEM+) MELEM + 1 J
N1 N2 N3 N4 NS
J PROPS(NMATS 1) | BETA (MELEM) RLOAD(NEQ,1) . J
- GSTIF~ ~

NMATSJJP_,‘W,MELEM:ﬂ__H_“___NEO
N5 NSA N6 N7
B
RLOAD(NEG,
ny NUMLDSET) LL(NEQ) A
N
_ NT-LL(NEQ)sNEQ OR __KCAP | ,J._NEQEKNUHLDSEII NEQ+4 *NRLK
N12 N8 MTOT
for

Figure 26d.
First Load Set.

On First Entry to SKSOLX from SKY for Solution

RLOAD has also
The transfer of RLOAD to the N12 location
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Memory Allocation in Principal Storage Vector A

10 (2, MPOIN) |COORD(MPOIN, 2) [LNODS (MELEM,9) | MATNO (MELEM)
. 2»MPOIN_ | 2aMPOIN_ | 9m=(MELEM+I) MELEM +1
N1 N2 N3 N4 NS
J PROPS(NMATS, 1) | BETA (MELEM) "p1sp” (NEo,1) 0
- GSTIF -
< NMATS a1t 1, ME LEM:,!_,__(,,_NEQ
NS NSA N6 \71 N7
T
R :
 \NEQ
- . ' (NEOQ)
NEQ ' NEQ LLINED :
. ,,,,,‘_.J“____*_T Ko
NEQ * NUMLDSET
N12 NB MTOT

Figure 26e. On Return to SKY from SKSOLX with Solution for First lLoad Set.

Note that "DISP" is not an Actual Variable Name. It is Used Here to Signify

that the Approximate RLOAD Vector is Replaced by a Solution Displacement
Vector in SKSOLX.

ID (2, MPOIN) |[COORD(MPOIN, 2) JLNODS (MELEM, Q)| MATNO (MELEM)

. _2%MPOIN | 2«aMPOIN | 9w(MELEM+1) MELEM +1
N1 N2 N3 Na NS
PROPS(NMATS, 1) | BETA (MELEM) RLOAD(NEQ, 2} : J
-+ GSTIF- _
. NMATS » 1 MELEM 4+ . Neo
NS N5A NG \\ N7
R B
DISP _+ RLOAD L
r (NEQ, 1) ' (NEQ,2) LL(NEQ) A
- - - - - — - 1 K
NEQ * NUMLDSET he
12 N8 MTOT

Figure 26f. On Second Entry to SKSOLX from SKY for Solution for
Second Load Set.
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Memory Allocation in Principal Storage Vector A

1D (2, MPOIN) [COORD (MPOIN, 2) |LNODS (MELEM 9} | MATNO (MELEM)
d—
2aMPOIN |~ 2w MPOIN 9w (MELEM +1) MELEM +1
N1 N2 N3 N4 NS
PROPS(NMATS, 1) | BETA (MELEM) “pise”(NEQ.2) .
- GSTIF~ -
. NMATS w11 | MELEM+I NEQ
NS N5A N6 N7
"D1sp” : "Disp”
J (NEQ.‘)E (NEQ,2) LL(NEQ) g
- | h K
NEQ * NUMLDSET
N12 N8B MTOT

Figure 26g. On Return to SKY from SKSOLX with Solution for Second Load Set.

ID (2, MPOIN)

COORD(MPOIN, 2)

LNODS (MELEM,9)

MATNO (MELEM)

. 2sMPOIN | 2xMPOIN__ | 9w (MELEM4+) MELEM +}
N1 N2 N3 N4 NS
J PROPS(NMATS, 1) | BCTA (MELEM) "pisp”(NE@.2) ASDIS(NPOIN+?
u NUMLDSET) | T
L‘__NMATS~‘11‘.,_...__MELEM:| B P NEQ
NS NSA N6 N7 r N9
— (NOTE BELOW)
REMMANTS OF GSTIF™! "pIse” (NEQ,
-- NUMLDSET) LL(nER)
. K
NEQ*NUMLDSET
N12 N8

MTOT

Figure 26h. On Return to SKY from SKYHLP. Note that Restrained and
Constrained DOF's are Added to "DISP" to Produce ASDIS.
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Memory Allocation in Principal Storage Vector A

ID (2, MPOIN) |[COORD(MPOIN, 2) [LNODS (MELEM,9)| MATNO (MELEM) _J
. 2w MPOIN___| 2= MPOIN 9 » (MELEM +1) MELEM + 4
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i TS m 1 NUMLDSET) | <
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N5 N5A N6 N N9
RLOAD (NEG, ) E
M
- NUMLDSET LL(Ne@) N
- - L K
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N12 NR MTOT

*
Read from F[LF 4

Figure 261i. On Return to CRAPRO from SKY. Note that RLOAD is replaced at N12
by a Read from FILE4 in SKY.
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